ime-lapse gravity monitoring: A systematic 4D approach ith application to aquifer storage and recovery
نویسندگان
چکیده
We studied time-lapse gravity surveys applied to the monitoring of an artificial aquifer storage and recovery ASR system in Leyden, Colorado. An abandoned underground coal mine has been developed into a subsurface water reservoir. Water from surface sources is injected into the artificial aquifer during winter for retrieval and use in summer. As a key component in the geophysical monitoring of the artificial ASR system, three microgravity surveys were conducted over the course of ten months during the initial water-injection stage. The time-lapse microgravity surveys successfully detected the distribution of injected water as well as its general movement. Quantitative interpretation based on 3D inversions produced hydrologically meaningful density-contrast models and imaged major zones of water distribution. The site formed an ideal natural laboratory for investigating various aspects of time-lapse gravity methodology. Through this application, we have studied systematically all steps of the method, including survey design, data acquisition, processing, and quantitative interpretation.
منابع مشابه
Sensitivity analysis of time lapse gravity for monitoring fluid saturation changes in a giant multi-phase gas reservoir located in south of Iran
The time lapse gravity method is a widely used technique to monitor the subsurface density changes in time and space. In hydrocarbon reservoirs, the density variations are due to different factors, such as: substitution of fluids with high density contrast, water influx, gas injection, and the variation in reservoir geomechanical behavior. Considering the monitoring of saturation changes in the...
متن کاملTime-lapse gravity: A numerical demonstration using robust inversion and joint interpretation of 4D surface and borehole data
There are a number of ongoing developments in the 4D gravity method for time-lapse production and sequestration problems. Complex model construction is an essential component for meaningful feasibility studies and data interpretation in 4D. In the case of oil reservoirs, for example, the 4D gravity method must deal with very small density contrasts at depth, and overly simplistic model represen...
متن کاملJoint inversion of surface and borehole 4D gravity data for continuous characterization of fluid contact movement
In this paper, we demonstrate the feasibility of jointly inverting 4D gravity data collected on the surface and in a borehole setting to characterize fluid contact movement over time. As technology rapidly advances towards a practical borehole gravity meter capable of collecting data in horizontal monitoring wells, the foundations for properly inverting and interpreting these valuable data must...
متن کاملSurvey design and model appraisal based on resolution analysis for 4D gravity monitoring
Time-lapse gravity surveys directly detect mass changes and offer unique means for monitoring the dynamics of the subsurface. As wider application of the method is emerging, survey design and model appraisal are key steps in developing a meaningful interpretation. We first examine what the optimal station spacing should be, in theory and in inversion-based simulations given a scale-length featu...
متن کاملEnergy efficiency in a building complex through seasonal storage of thermal energy in a confined aquifer
Confined aquifers are formations surrounded by impermeable layers called cap rocks and bed rocks. These aquifers are suitable for the seasonal storage of thermal energy. A confined aquifer was designed to meet the cooling and heating energy needs of a residential building complex located in Tehran, Iran. The annual cooling and heating energy needs of the buildings were estimated to be 8.7...
متن کامل